Artificial Intelligence, Modeling and Simulation in Engineering (AIMS) Certificate Graduate Program

Artificial intelligence (AI) is a technology that mimics human intelligence to solve complex problems and perform complex tasks. Machine learning (ML) is a subfield of AI that uses statistical methods to learn from data without being explicitly programmed. Deep learning (DL) is one of the main subsets of ML and uses multi-layered neural networks to learn from data. Modeling and simulation (M&S) in engineering is a field that uses mathematical models as a basis for simulations to generate data analyzed for product and system design. M&S is a knowledge-based approach that develops models to generate data, while ML is a data-based approach that learns from data to generate models. The AIMS certificate program aims to prepare College of Engineering students with new modeling strategies that combine the approaches of AI/ML/DL and M&S to bridge the knowledge gap between them and take advantage of respective approaches in conjunction with UQ that accounts for both model and data uncertainties, allowing for analysis and design of complex products and systems.

The AIMS graduate certificate program requires a minimum of 15 semester hours (s.h.) of the following graduate coursework. To earn the certificate, the student is required to attain a minimum GPA of 3.00 in coursework specifically for the certificate.

Table 1. Students must complete at least two of these courses
Course numberCourse titleCreditOffering
ME:5170Data-driven Analysis in Engineering Mechanics3 s.h.Fall, odd years
ME:5300Uncertainty Quantification and Design Optimization 3 s.h.Fall, even years 
ME:6265*Multiscale Computational Science and Engineering3 s.h.Spring, every 2 years 

 *Previously ME:6255 Multiscale Modeling

 

Table 2: If completing two (or three) courses from Table 1, students must complete at least two (or one) of these courses 
Course numberCourse titleCreditOffering
ME:4117Finite Element Analysis3 s.h.Every Fall
ME:4150Artificial Intelligence in Engineering3 s.h.Every Fall
ME:4175Computational Naval Hydrodynamics3 s.h.Spring, every 2 years
ME:5143Computational Fluid and Thermal Engineering3 s.h.Every Fall
ME:6240Probabilistic Inference & Estimation for Mechanical Systems3 s.h.Spring, odd years
ME:7256Computational Solid Mechanics3 s.h.Spring, odd years 
ME:7257Probabilistic Mechanics and Reliability3 s.h.Fall, every 3 years
ME:7269Computational Fluid Dynamics & Heat Transfer3 s.h.Spring, every 3 years

 

One elective course may be selected from:

  1. Engineering courses at an upper level (e.g., ME courses numbered 4100 and above),
  2. Mathematics, physics, or chemistry courses at a more advanced level than those required in the ME curriculum, or
  3. Independent investigation in a mechanical engineering subject.

Students could petition to substitute the courses listed in Table 2 with graduate-level AI/ML/DL and M&S related courses offered by ME and other departments.

Students are strongly encouraged to participate in at least one workshop, related to Python, R, or high performance and parallel computing offered by Information Technology Services Research Services (ITS-RS), and HACKUIOWA.

Students who have one or more courses yet to complete when the certificate program is applied are allowed to count courses completed in previous recent semesters toward their certificate. This policy applies to ME:6255 Multiscale Modeling.

Application link and more information

To apply, submit an application online.

For further information, contact Professor Jia Lu