
Harnessing the Heartland

NASA +NOAA + USGS

Earth Sciences and Applications from Space Decadal Survey

http://nap.nationalacademies.org/21788

Published in 2015

Published in 2018

(Simplified) Process

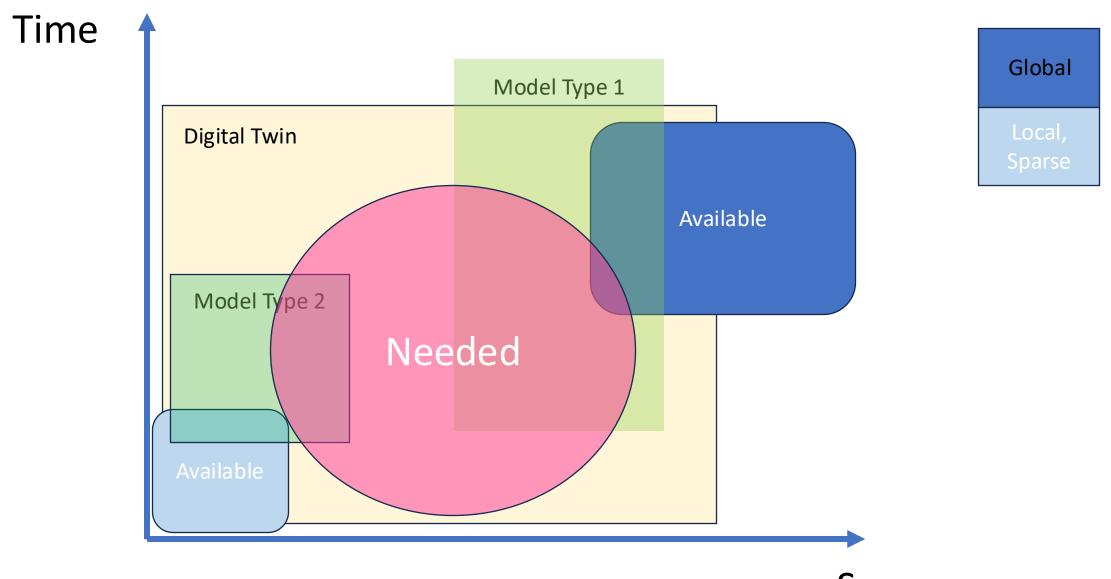
- NASA Lead with input from NOAA, USGS and NRC/NASEM Staff and CESAS (Committee on Earth Science and Applications from Space) define Task & Process
- 2. Form Committee and Subcommitees; Issue RFI
- 3. RFI period (outreach to community) Opportunity!!!!
- 4. Reading and Synthesis
- 5. Committee Meetings including Cross-Disciplinary Meetings
- 6. Writing & Review
- 7. Dissemination and Publication

Ultimate Goal: Science & Applications Traceability Matrix (SATM)

NASA Strategic Goals	Earth Science Decadal Survey Priorities	Sn	SnowGlobe Science and Application Objectives		
1.1: Understand the Earth system and its climate	Water & Energy Cycle H-1. How is the water cycle changing? (Most Important)	cycles	S1	Reduce uncertainty in global snow mass estimates	
	H-1c. Quantify rates of snow accumulation, snowmelt, ice melt, and sublimation from snow and ice worldwide at scales driven by topographic variability. (Most Important)	Earth's water and energy cycles	S2		
	H-4. Influence of water cycle on natural hazards and preparedness (Very Important) Weather & Air Quality	v in the Earth's	S3		
	 W-3. Influence of Earth surface variations on weather and air quality (Very Important) Climate Variability & Change C-6. Can we significantly improve seasonal to decadal forecasts of societally-relevant climate variables? 	SnowGlobe Science Goal: Discern the role of seasonal snow in the			
			A1		
	(Very Important) C-8b. Improve understanding of high-latitude variability and mid-latitude weather linkages (Very Important)	ioal: Discern th	S4		
	Earth Surface S-4b. Quantify weather events, surface hydrology, and changes in ice/water content of near- surface materials that produce	Surface 0 Quantify weather events, 0 ce hydrology, and changes 0 /water content of near- 0 ce materials that produce 0			
	landscape change. (Important)	SnowGlok	A2		

Toward an Earth Observing System (Digital Twin Earth) framework

using satellite observations and models


Water-Energy Coupling Acceleration of water cycle; rain, snow, and ET; extremes?

Availability of Water, Coupling with Biogeochemical Cycles Water availability, streams, services? Prediction of Changes Land and water use modify water and energy cycles; short- and long-term consequences? Thriving on Our Changing Planet

http://www.nas.edu/esas2017

Hazards, Extremes, Sea Level Floods, wildfires, landslides, subsidence, droughts, human and ecosystem health?

Opportunity for Impact

It does not have to be about specific missions/architectures/technologies

1. Most Important - Focus on **(1) Science and, or (2) Applications**

Why remote sensing measurements are necessary (and transformative) What measurements are desired What measurements are sufficient Coverage, resolution in space and time, accuracy, uncertainty

2. Very Important and Important

- (a) Technical Readiness "Landscape" Analysis
- (b) Evaluation

What would it take for you to be convinced S&A reqs are met? How? Ground Validation (GV), Suborbital Campaigns, Operational Demo,etc

SnowGlobe -Global Snow Water Equivalent Observations

from Space

https://snowglobe.lllinois.edu

Ana P. Barros, Paul Siqueira, Michael Durand, Carrie Vuyovich, Batuhan Osmanoglu, Leung Tsang, Hans-Peter Marshall, Edward J. Kim, Joel Johnson, Sujay Kumar, Paul Houser, Dorothy Hall, Martin Perrine, Mark Raleigh, Michael Goldstein, Mehmet Kurum, James Garrison