

GREENSIGHT GreenSight Overview February 28th, 2024

Jacola Roman Atmospheric Scientist jroman@greensightag.com

GreenSight Company Overview

- Founded in 2015, GS is a small business headquartered in Boston, MA, focused on developing robotics and avionic solutions targeting agriculture, defense and weather.
- Team of ~50 with a wide-range of expertise including: UAS, engineers across mechanical, electrical and advanced software, as well as AI/ML scientists.
- 300+ VTOL UAS developed and manufactured in house since 2015 ranging from 100g to 100kg.

WeatherHive System Overview

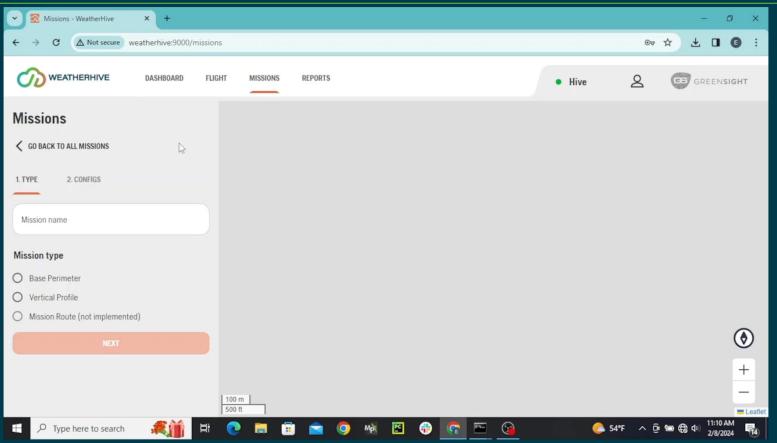
WeatherHive (WxHive) produces on-demand targeted environmental monitoring at a high spatial, temporal, and vertical sampling rate throughout the lower troposphere.

Key Capabilities

- Observables: Temperature, Relative Humidity, Barometric Pressure, 3D-Winds
- Rapid deployment or routine observations
- Reusable and customizable
- Applications: Nowcasting, wildland fire monitoring, Planetary Boundary Layer (PBL) studies, model training, etc.

Description

- Al coordinated swarms of 10 or more
 Weather Intelligence Sensing Platforms WISPs (nanodrones) automatically
 launched from their 'Hive'
- Span a 300 square kilometer area
- Reach up to 5 km in altitude
- ~1 hour of sampling per flight


Status

- Initial Validation Nov 23 - March 24
- Validation Campaigns and End User Testing April-November 2024
- US volume production beginning 2024

■ WxHive Demo

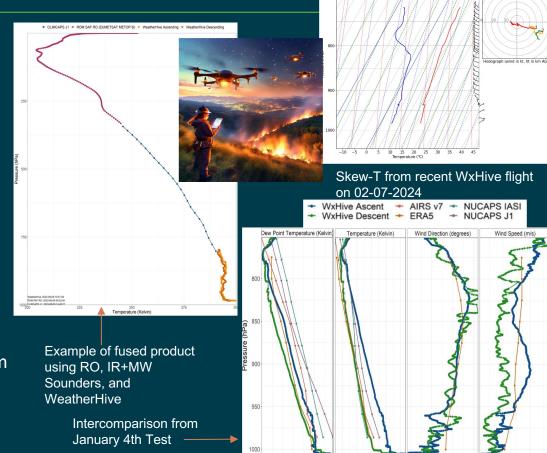
■ WeatherHive Specs

WISP	Body	GF ABS
	Diagonal	240mm
	Height	45 mm
	Weight	220 g
	Flight Controller	microBlue
Communications	Telemetry Frequency	900 MHz
	Transmission Distance	10 km
Propulsion System	Motors	3000kV BLDC
	Maximum Thrust	600 g
	Maximum Power	140 W
Power	Battery Type	2S 18650
	Capacity	3500 mAh
	Endurance	50 minutes
Hive	Dimensions	250 x 250 x 900 mm
	Weight	20 kg
	Battery	3x BB-2590
	Drone capacity	10 WISPs

*For sensor absolute accuracy see <u>TMP117 datasheet</u> and <u>BME280 datasheet</u>

Operation	Maximum Wind Resistance	22 m/s	
	Maximum Operating Speed	16 m/s	
	Maximum Flight Ceiling	5 km	
	Recommended Operating	-20 to 50 C	
	Temperatures	-20 10 30 C	
	Typical Ascent Rates	16 m/s	
	Typical Descent Rates	10 m/s	

In-Situ Variables	Air Temperature (T) Relative Humidity (RH) Barometric Pressure (P)	
Derived Variables	3D Wind Speed (WS) 3D Wind Direction (WD)	
Accuracy Goals*	T: within 0.5 Kelvin RH: within 2% P: within 1 hPa WS: within 1 m/s WD: within 2 degrees	
Logging Rate	10 Hz	


WxHive End User Applications

- Severe Weather

 Provide on demand targeted data for
 Weather Forecast Offices (WFO) to
 reduce warning lead time
- Wildland Firefighting

 Provide 24/7 wildland fire weather monitoring to improve situational awareness and reduce time from ignition to detection and response
- NWP Modeling

 Data assimilation to increase forecast accuracy of extreme weather events
- Date Fusion
 Integrating data for a wide range of earth science studies

Example of Public/Private Collaboration (NOAA CRADA)

GreenSight and NOAA will collaboratively work toward the goal of improving research, testing and evaluation of uncrewed aircraft systems for environmental observations and prediction through deployment of WxHive at a WFO.

- 1. Special Soundings
- 2. High-Altitude Sampling
- 3. Data Integration
- 4. Expansion of Regulatory Allowance

The proposed collaboration directly aligns with **NOAA's Mission** to build a **Weather/Climate Ready Nation** through the enhancement of observations and monitoring systems by **demonstrating** the advantage of **WeatherHive** data to **support the NWS mission of protecting life and property**.

Depending on the location, the phenomena will be different. WxHive's flexibility can target these locally specific phenomena

Upcoming Activities/Partnerships

- WMO UAS Demonstration Campaign
- Participation in the Eclipse Campaign
- Field Campaigns

- Reach out!
- Small Business Innovation Research (SBIR)
- Small Business Technology Transfers (STTR)
- Traditional Research Funding

Jacola Roman Atmospheric Scientist jroman@greensightag.com

